تاریخ ریاضیات را میتوان به عنوان دنبالهای از تجریدسازیهای فزاینده دید. اولین قابلیت تجریدسازی که در بسیاری از حیوانات مشترک است،[۱۰] احتمالاً مفهوم عدد است؛ فهم این مطلب که مجموعۀ دو سیب و مجموعۀ دو پرتقال (بهعنوان مثال) با هم اشتراکی دارند، و آن کمیت تعدادشان است.
همانطور که شواهد بر روی چوبخط نشان میدهد، مردم پیشاتاریخ میتوانستند اشیاء فیزیکی را بشمرند و توانایی شمردن اشیاء تجریدی مثل روز، فصل و سال را نیز داشتند.[۱۱]
شواهد مربوط به ریاضیات پیچیدهتر تا ۳۰۰۰ قبل میلاد مشاهده نشده، زمانی که بابلیها و مصریها شروع به استفاده از حساب، جبر و هندسه برای محاسبات مربوط به مالیات و دیگر مفاهیم اقتصادی، و ساخت و ساز یا نجوم کردند.[۱۲] قدیمیترین متون ریاضیاتی مربوط به بینالنهرین و مصر میشود که به ۲۰۰۰–۱۸۰۰ قبل از میلاد بازمیگردد. بسیاری از متون اولیه سه تاییهای فیثاغوری را ذکر کرده و لذا به نظر میرسد که قضیه فیثاغورس کهنترین و گستردهترین توسعه ریاضیاتی بعد از حساب مقدماتی و هندسه باشد. در اسناد تاریخی، در ریاضیات بابلیها بود که حساب مقدماتی (جمع، تفریق، ضرب و تقسیم) ابتدا پدیدار گشت. بابلیها همچنین از یک دستگاه مکان-ارزشی بهره میجستند که در آن دستگاه اعداد پایه ۶۰ پیادهسازی شده بود، ازین دستگاه عددی هنوز هم برای اندازهگیری زاویه و زمان استفاده میشود.[۱۳]
با آغاز سده ششم قبل از میلاد مسیح، ریاضیات یونانیها با فیثاغورسیها مطالعهٔ نظام مندی را در ریاضیات، به هدف شناخت بیشتر خود ریاضیات آغاز نمودند که سرآغاز ریاضیات یونانیها بود.[۱۴] حدود ۳۰۰ قبل از میلاد، اقلیدس روش اصول موضوعه ای را که هنوز هم در ریاضیات به کار میرود را معرفی کرد که شامل تعاریف، اصول، قضیه و اثبات بود. کتاب مرجع او که به اصول اقلیدس معروف است بهطور گسترده به عنوان موفقترین و تأثیر گذارترین کتاب مرجع همه زمانها شناخته میشود.[۱۵] بزرگترین ریاضیدانان باستان را اغلب ارشمیدس (۲۸۷ تا ۲۱۲ قبل از میلاد) اهل سیراکوز میدانند.[۱۶] او فرمولهایی برای محاسبهٔ مساحت و حجم اجسام در حال دوران پیدا کرد و از روش افنا برای محاسبه مساحت زیر منحنی سهمی با استفاده از جمع یک سری بینهایت استفاده کرد به گونه ای که بی شباهت با حساب دیفرانسیل و انتگرال مدرن نیست.[۱۷] دیگر دستاوردهای قابل توجه در ریاضیات یونان مقاطع مخروطی (آپولونیوس اهل پرگا، سده سوم قبل از میلاد)،[۱۸] مثلثات (هیپارکوس اهل نیکا (سده دوم قبل از میلاد))،[۱۹] و آغاز جبر (دیوفانتوس، سده سوم پس از میلاد) بود.[۲۰]
سیستم عددی هندو-عربی و قواعد استفاده از عملیاتش که امروزه در سراسر جهان استفاده میشود، در طی هزارهٔ اول میلادی در هند توسعه یافت و سپس از طریق ریاضیات اسلامی به جهان غرب انتقال یافت. دیگر پیشرفتهای مربوط به ریاضیات هندیها شامل تعریف مدرن سینوس و کسینوس و فرم اولیه سریهای بینهایتی است.